Uncluttering Your AR-15 Rail: Pick Combo Laser/Light Grips
The AR-15's popularity is partially due to the weapon's modularity, light weight, and fast handling. But too much technology hung off every rail can morph the AR into an unwieldy and overly complicated rig—turning "tactical" into "tacticool."
Multifunction devices that combine optical laser and lighting into a vertical grip platform can help keep your rifle trim and uncluttered. We recently tested four such laser/light foregrips from three manufacturers. From MidwayUSA we bought two models made by Crimson Trace Corporation, the MVF-515 Red ($399, # 211142) and the MVF-515 Green ($599, # 812310). Both grips use a dual output 150-/200-lumen LED and feature independent controls for the light and laser. The now-discontinued but inexpensive Lasermax Colt AR-15 CGL Foregrip Laser ($161 at www.CheaperThanDirt.com, #61493) combines a red laser with a low-output LED for navigation lighting. At Sig's online store www.SigSauer.com, we found the Sig Sauer Stoplite STL-300J, $215, which combines a monstrous 700-lumen tactical light with a red laser.
Mil-Dot Scopes for Less Than $1500: Bushnell, Burris, Trijicon
Mil-Dot Scopes for Less Than $1500: Bushnell, Burris, Trijicon
Rimfire Riflescopes Under $50: Bubbles Sink TruGlo and BSA
Rimfire Riflescopes Under $50: Bubbles Sink TruGlo and BSA
Red-Dot Sights from Aimpoint, Insight Technology, and Vortex
Why does an illuminated dot provide faster recognition for the shooter? First and foremost, the illuminated dot is the brightest object in the field of view. This brings your eye to the dot like a magnet. The key to shooting quickly with an illuminated dot is to focus on the target with the dot in your peripheral vision. Find your desired point of impact, cover it with the dot, and fire.
In this test we will be evaluating several aspects that we think should be considered when choosing an electronic dot scope. Ease of mounting and sighting in, durability in terms of function and repeatable adjustment, and quality of vision regarding the dot and its surrounding field of view. To test we enlisted the help of two rifles. They were the Smith & Wesson M&P 15-22 and the Marlin 1895SBL. The M&P 15-22 was tested in our February 2010 issue and fires 22LR ammunition. The Marlin 1895SBL is a big-bore lever-action rifle that shoots fat 45-70 cartridges, (www.marlinfirearms.com/Firearms/bigbore/1895SBL.asp). We began by sighting in each scope atop the Marlin 1895SBL and firing from the 100-yard line at Phil Oxleys Impact Zone (www.theimpactzonerange.com). Here we used Remington 405-grain soft points (R4570G) and PMC 405-grain lead flat point ammunition. Next, we fired at a multiple target array to experience what each scope had to offer in terms of rapid acquisition. For this portion of our test we fired Winchester 300-grain JHP rounds (X4570H). We chose the hefty Marlin for two reasons. First, it supplied enough recoil to challenge the durability of the scopes. Next, working its lever action provided an extra interruption to sight alignment above and beyond the recoil impulse. Our target array consisted of five cardboard IPSC targets for backing arranged in a triangle or "Christmas tree" pattern. Point of aim was a Reckstine Sight-In Target fixed at center mass on each backing. Actual distance from the shooter for each target was, left to right, 22.5 feet, 33 feet, 47 feet, 39 feet and 23 feet. Exercise One was to engage all targets with one round each moving from left to right. Start position was shooter facing downrange muzzle pointing towards the ground about 2 feet in front of the shooter. A round was in the chamber with four rounds in the magazine. The hammer was back and the crossbolt safety was activated. Exercise One was attempted two times and we recorded total elapsed time for each run. We also took note of shot placement on each target.
[IMGCAP(2)]
For Exercise Two we changed to fresh Reckstine Sight-In Targets on each backing. Exercise Two required that the shooter begin with the furthest target at the top of the triangle. Order of engagement continued with the furthest target to the left, the furthest target to the right and then left to right on the pair of near targets. Again, we recorded total elapsed time and made note of shot placement. Each scope was tested in this manner and the shooter was allowed to dry fire each exercise before firing beginning each exercise. In fact, we recorded the elapsed time of the very first dry fire run, from audible start signal to the final drop of the hammer. We used this to set a par time on our Competition Electronics shot recording timer. This provided an audible structure against which to measure our dry fire practice.
The Smith & Wesson M&P 15-22 AR-15 style rimfire carbine was used primarily to test repeatability of zero. We began by undoing all previous adjustments. This meant centering the dot inside the scope. We did this by turning down the elevation screw until it stopped, then turning it in the upwards direction counting each click until the screw stopped again at its maximum elevation. This takes concentration, patience, and a soft touch so not to damage the mechanism. We then divided the number of clicks by two and turned the screw back to its mechanical center point. We repeated this chore with the windage adjustment. It is important to begin with the adjustments at center because this offers the greatest amount of potential adjustment and the least amount of strain on the adjustment mechanism. In addition, we believe that even without magnification, the center of a given lens is the point at which it is most visually efficient.
For our repeatability tests we visited the 25-yard line at American Shooting Centers, (www.amshootcenters.com). From the bench we zeroed each scope. Then we turned the windage adjustment 10 clicks left and shot a group. Next, we turned the adjustment 20 clicks to the right and shot another group. Finally, we adjusted the scope 10 clicks to the left and looked for a group with its center over the original point of zero. On our test days we did our best to wait out any gusts of wind that might skew our windage test and judged accordingly. We repeated this test for elevation adjustment by going 10 clicks up, 20 clicks down and then 10 clicks up. We think dot scopes will rarely be used like a mil-dot tactical scope (for example, dialing in changes and returning to zero), but we hoped this test would simulate longer term use that would likely include being readjusted for use on any number of rifles or handguns. Would one scope stand out from the others? Lets light them up and see what happens.
Red-Dot Sights from Aimpoint, Insight Technology, and Vortex
Why does an illuminated dot provide faster recognition for the shooter? First and foremost, the illuminated dot is the brightest object in the field of view. This brings your eye to the dot like a magnet. The key to shooting quickly with an illuminated dot is to focus on the target with the dot in your peripheral vision. Find your desired point of impact, cover it with the dot, and fire.
In this test we will be evaluating several aspects that we think should be considered when choosing an electronic dot scope. Ease of mounting and sighting in, durability in terms of function and repeatable adjustment, and quality of vision regarding the dot and its surrounding field of view. To test we enlisted the help of two rifles. They were the Smith & Wesson M&P 15-22 and the Marlin 1895SBL. The M&P 15-22 was tested in our February 2010 issue and fires 22LR ammunition. The Marlin 1895SBL is a big-bore lever-action rifle that shoots fat 45-70 cartridges, (www.marlinfirearms.com/Firearms/bigbore/1895SBL.asp). We began by sighting in each scope atop the Marlin 1895SBL and firing from the 100-yard line at Phil Oxleys Impact Zone (www.theimpactzonerange.com). Here we used Remington 405-grain soft points (R4570G) and PMC 405-grain lead flat point ammunition. Next, we fired at a multiple target array to experience what each scope had to offer in terms of rapid acquisition. For this portion of our test we fired Winchester 300-grain JHP rounds (X4570H). We chose the hefty Marlin for two reasons. First, it supplied enough recoil to challenge the durability of the scopes. Next, working its lever action provided an extra interruption to sight alignment above and beyond the recoil impulse. Our target array consisted of five cardboard IPSC targets for backing arranged in a triangle or "Christmas tree" pattern. Point of aim was a Reckstine Sight-In Target fixed at center mass on each backing. Actual distance from the shooter for each target was, left to right, 22.5 feet, 33 feet, 47 feet, 39 feet and 23 feet. Exercise One was to engage all targets with one round each moving from left to right. Start position was shooter facing downrange muzzle pointing towards the ground about 2 feet in front of the shooter. A round was in the chamber with four rounds in the magazine. The hammer was back and the crossbolt safety was activated. Exercise One was attempted two times and we recorded total elapsed time for each run. We also took note of shot placement on each target.
[IMGCAP(2)]
For Exercise Two we changed to fresh Reckstine Sight-In Targets on each backing. Exercise Two required that the shooter begin with the furthest target at the top of the triangle. Order of engagement continued with the furthest target to the left, the furthest target to the right and then left to right on the pair of near targets. Again, we recorded total elapsed time and made note of shot placement. Each scope was tested in this manner and the shooter was allowed to dry fire each exercise before firing beginning each exercise. In fact, we recorded the elapsed time of the very first dry fire run, from audible start signal to the final drop of the hammer. We used this to set a par time on our Competition Electronics shot recording timer. This provided an audible structure against which to measure our dry fire practice.
The Smith & Wesson M&P 15-22 AR-15 style rimfire carbine was used primarily to test repeatability of zero. We began by undoing all previous adjustments. This meant centering the dot inside the scope. We did this by turning down the elevation screw until it stopped, then turning it in the upwards direction counting each click until the screw stopped again at its maximum elevation. This takes concentration, patience, and a soft touch so not to damage the mechanism. We then divided the number of clicks by two and turned the screw back to its mechanical center point. We repeated this chore with the windage adjustment. It is important to begin with the adjustments at center because this offers the greatest amount of potential adjustment and the least amount of strain on the adjustment mechanism. In addition, we believe that even without magnification, the center of a given lens is the point at which it is most visually efficient.
For our repeatability tests we visited the 25-yard line at American Shooting Centers, (www.amshootcenters.com). From the bench we zeroed each scope. Then we turned the windage adjustment 10 clicks left and shot a group. Next, we turned the adjustment 20 clicks to the right and shot another group. Finally, we adjusted the scope 10 clicks to the left and looked for a group with its center over the original point of zero. On our test days we did our best to wait out any gusts of wind that might skew our windage test and judged accordingly. We repeated this test for elevation adjustment by going 10 clicks up, 20 clicks down and then 10 clicks up. We think dot scopes will rarely be used like a mil-dot tactical scope (for example, dialing in changes and returning to zero), but we hoped this test would simulate longer term use that would likely include being readjusted for use on any number of rifles or handguns. Would one scope stand out from the others? Lets light them up and see what happens.
Ballistic Reticles: Bushnell and Leupold Offer More Than Nikon
Beasts usually like to keep as much woodlot, coulee, or cornfield between us and them as possible, and that may mean shooting our rifle farther than the sighted-in distance. Essentially we use old-fashioned Kentucky elevation and take our best guess at crosshair hold over. Combine a good sense of distance with shooting experience, and you could fill out your tag. If not, you'll kick up dirt below two sets of hooves, whiz a round high, or, sadly, wound an animal.
Riflescopes with ballistic reticles purportedly take the guesswork out of long-distance shooting by combining a typical crosshair with additional aiming points at set distances. The reticles are calibrated to popular hunting cartridges with muzzle velocities in the range of 2800 to 3000 fps or more. The usual suspects fall into that range—243, 6mm, 25-06, 270, 308, 30-06, 7mm Rem. Mag., 300 Win. Mag., including a slew of others. Since the aiming points are not calibrated to a specific load they, offer general approximations, which means you will need to shoot your rifle to understand how the reticle will work with your specific rifle and cartridge combination. The reticles are chockfull of aiming points and seem cluttered compared to a typical hunting scope, but they are quite easy to master. You may want to make a cheat sheet on an index card or a piece of masking tape and fix it to your stock so you can remember what aiming points are for what distances. Finally, you will still need to know the distance to the target, and some scopes have this covered with built-in range estimators, as you will see.
Our team recently tested three scopes with ballistic reticles: Bushnell's Elite 3200 with DOA 600 reticle, Leupold's VX-3 with Boone & Crockett reticle, and Nikon's Monarch with BDC reticle. We were interested to see if the additional aiming points would be easy to use and hit true to the distance claimed. Since the purpose of these scopes is hunting, a kill zone the size of paper plate, or about 9 inches in diameter, was used to determine whether the aiming points worked. We also looked at light-gathering ability and weather resistance.
To test the scopes, our shooters fixed them to a Kimber model 8400 Classic in 30-06, which is a perfect example of a hunting rifle/caliber combination likely to be found from Montana to Maine. Since the 30-06 is common caliber and is available in a number of bullet styles and weights, we assumed it would fit the scope manufacturers' criteria as a "popular caliber" as stated in their manuals.
We also wondered if proprietary and not-so-popular calibers that fall into the muzzle velocity range, like those from Weatherby and newer ones like the 30TC, would work with these scopes. Debuting just a few years ago, the 30TC, which is only loaded by Hornady, has less recoil than a 308 or 30-06 yet achieves a higher velocity using the same weight bullet. We tested the 30TC in a Thompson/Center Icon using Hornady 165-grain SST InterLock bullets. We found that what mattered were the velocities and bullet weights. All scopes performed within the calculated range.
Test ammunition consisted of Federal Premium 165-grain Sierra Gameking boattail softpoints and Remington's Premier Core-Lokt Ultra bonded pointed softpoints in 168 grains. Since the scopes are calibrated to muzzle velocity, we chronographed the factory ammo with a ProChrono chronograph to be sure the Kimber's 24-inch barrel provided the necessary length for the bullet to pick up speed. After initial sight-in, our test procedure consisted of three-shot groups fired from a bench rest. Starting at 100 yards and progressing to 200 yards, we soon ran out of range, so we fired at 100 yards using the additional aiming points. We used an online ballistic calculator (www.biggameinfo.com) to determine the bullet trajectories. The idea was that the shots should group at a height consistent to the caliber's trajectory, so the 300-yard aiming point group with the Federal 165-grain bullets should print 4.6 in. high at 100 yards and so on. Light-gathering ability was tested during dusk conditions, and the scopes were frozen for 15 minutes and then placed in warm water for another 15 minutes to test water and fogging resistance.
Shooting took place over numerous sessions at the Fin Fur Feather Club, a members-only facility in Chaplin, Connecticut. Let's see where the bullets hit the paper.
Self-Defense Handgun Sights: Novak and Wilson Combat Win
Where is no end to debate concerning handgun sights and their use. Personal preference plays a role, but a poor choice in a defensive handgun may have serious consequences. Good enough and bargain basement dont cut it. Even the use of sights is debated. Some argue for point shooting or instinctive fire at close range. Unsighted fire sounds like a disaster waiting to happen. The keys to accurate fire include smooth trigger compression, proper sight alignment and proper sight picture. Area aiming or aiming for the whole target is not going to get the job done.
For most gun-buyers, sights are a make-or-break part of the purchase, as important as the cartridge. Sights can-and should-influence which guns you buy. Also, on guns you already own, you can upgrade the sights, especially 1911s and Glocks-if you know what works, and what doesnt. A person who purchased the best pistol he could afford at the time may wish to upgrade to better sights at a later date, but how does he know what to choose?
We wanted to compare the execution of several sights found on existing factory guns and as aftermarket products to see which one offered the best combination of sight quality, ease of presentation, and durability. This is a tricky job description for a sight, because those requirements can be contradictory. In the past the shortcomings of pistol sights were understood. A universal fault was the round front sight. Where was the top of the sight? Sight pictures were not repeatable. About 1923 a Western peace officer named Tom Threepersons had a square and tall front sight added to his 4.75-inch-barrel Colt Single Action Army. Better sights followed.
Among the first practical high-visibility handgun sights were Kings Hardballer sights. They raised the sight picture and offered an improvement over small GI sights. The problem with fitting combat sights on a self-defense gun is the height of target-type sights. Too-tall front and rear sights became so obtrusive the handgun became difficult to holster. If you use a rear sight that sets tall above the frame, then the front sight must have a correspondingly high profile. The revolution came with Wayne Novaks Lo Mount sights. Designed like a pyramid, these sights require a special mounting cut in the slide to ride low. The front sight may be as low as .200 inch, although a .249 sight is also used.
Reducing the vertical profile of a sight is important because adjustable sights are exposed to all manner of insult and are relatively fragile. If you visit a police department, you notice that the area around the door jamb of the squad room is often beaten up. This is because that is hip level, and cops guns, especially the sights, take a beating on doorways. And, of course, sights are rubbed on by holsters, and they may impede drawing the weapon when you need it most.
To consider these issues, we looked at nine different common sight styles on a host of guns. GI sights, Mil Spec sights, Trijicon sights, XS big dot sights, Novak sights, Heinie sights, McCormick sights, Para Ordnance sights, and Wilson Combat sights.
Self-Defense Handgun Sights: Novak and Wilson Combat Win
Where is no end to debate concerning handgun sights and their use. Personal preference plays a role, but a poor choice in a defensive handgun may have serious consequences. Good enough and bargain basement dont cut it. Even the use of sights is debated. Some argue for point shooting or instinctive fire at close range. Unsighted fire sounds like a disaster waiting to happen. The keys to accurate fire include smooth trigger compression, proper sight alignment and proper sight picture. Area aiming or aiming for the whole target is not going to get the job done.
For most gun-buyers, sights are a make-or-break part of the purchase, as important as the cartridge. Sights can-and should-influence which guns you buy. Also, on guns you already own, you can upgrade the sights, especially 1911s and Glocks-if you know what works, and what doesnt. A person who purchased the best pistol he could afford at the time may wish to upgrade to better sights at a later date, but how does he know what to choose?
We wanted to compare the execution of several sights found on existing factory guns and as aftermarket products to see which one offered the best combination of sight quality, ease of presentation, and durability. This is a tricky job description for a sight, because those requirements can be contradictory. In the past the shortcomings of pistol sights were understood. A universal fault was the round front sight. Where was the top of the sight? Sight pictures were not repeatable. About 1923 a Western peace officer named Tom Threepersons had a square and tall front sight added to his 4.75-inch-barrel Colt Single Action Army. Better sights followed.
Among the first practical high-visibility handgun sights were Kings Hardballer sights. They raised the sight picture and offered an improvement over small GI sights. The problem with fitting combat sights on a self-defense gun is the height of target-type sights. Too-tall front and rear sights became so obtrusive the handgun became difficult to holster. If you use a rear sight that sets tall above the frame, then the front sight must have a correspondingly high profile. The revolution came with Wayne Novaks Lo Mount sights. Designed like a pyramid, these sights require a special mounting cut in the slide to ride low. The front sight may be as low as .200 inch, although a .249 sight is also used.
Reducing the vertical profile of a sight is important because adjustable sights are exposed to all manner of insult and are relatively fragile. If you visit a police department, you notice that the area around the door jamb of the squad room is often beaten up. This is because that is hip level, and cops guns, especially the sights, take a beating on doorways. And, of course, sights are rubbed on by holsters, and they may impede drawing the weapon when you need it most.
To consider these issues, we looked at nine different common sight styles on a host of guns. GI sights, Mil Spec sights, Trijicon sights, XS big dot sights, Novak sights, Heinie sights, McCormick sights, Para Ordnance sights, and Wilson Combat sights.
10X42 Binoculars Test, Part II: Zeiss Beats Swarovski, Leica
We examined six pairs of optics ranging in price from $260 to nearly $1,700 to see if price really has an impact on ease of use and performance. This time, models over $1100.
Binoculars Test, Part I: Leupold 10x40s Beat Bushnell, Steiner
We examined six pairs of optics ranging in price from just under $300 to nearly $1,700 to see if price really has an impact on ease of use and performance. First up, models under $900.